10 research outputs found

    Prevalence and patterns of higher-order drug interactions in Escherichia coli.

    Get PDF
    Interactions and emergent processes are essential for research on complex systems involving many components. Most studies focus solely on pairwise interactions and ignore higher-order interactions among three or more components. To gain deeper insights into higher-order interactions and complex environments, we study antibiotic combinations applied to pathogenic Escherichia coli and obtain unprecedented amounts of detailed data (251 two-drug combinations, 1512 three-drug combinations, 5670 four-drug combinations, and 13608 five-drug combinations). Directly opposite to previous assumptions and reports, we find higher-order interactions increase in frequency with the number of drugs in the bacteria's environment. Specifically, as more drugs are added, we observe an elevated frequency of net synergy (effect greater than expected based on independent individual effects) and also increased instances of emergent antagonism (effect less than expected based on lower-order interaction effects). These findings have implications for the potential efficacy of drug combinations and are crucial for better navigating problems associated with the combinatorial complexity of multi-component systems

    Extreme dNTP pool changes and hypermutability in dcd ndk strains

    No full text
    Cells lacking deoxycytidine deaminase (DCD) have been shown to have imbalances in the normal dNTP pools that lead to multiple phenotypes, including increased mutagenesis, increased sensitivity to oxidizing agents, and to a number of antibiotics. In particular, there is an increased dCTP pool, often accompanied by a decreased dTTP pool. In the work presented here, we show that double mutants of Escherichia coli lacking both DCD and NDK (nucleoside diphosphate kinase) have even more extreme imbalances of dNTPs than mutants lacking only one or the other of these enzymes. In particular, the dCTP pool rises to very high levels, exceeding even the cellular ATP level by several-fold. This increased level of dCTP, coupled with more modest changes in other dNTPs, results in exceptionally high mutation levels. The high mutation levels are attenuated by the addition of thymidine. The results corroborate the critical importance of controlling DNA precursor levels for promoting genome stability. We also show that the addition of certain exogenous nucleosides can influence replication errors in DCD-proficient strains that are deficient in mismatch repair
    corecore